首页> 外文OA文献 >A method of parameterising a feed forward multi-layered perceptron artificial neural network, with reference to South African financial markets
【2h】

A method of parameterising a feed forward multi-layered perceptron artificial neural network, with reference to South African financial markets

机译:参考南非金融市场参数化前馈多层感知器人工神经网络的方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

No analytic procedures currently exist for determining optimal artificial neural network structures andparameters for any given application. Traditionally, when artificial neural networks have been appliedto financial modelling problems, structure and parameter choices are often made a priori withoutsufficient consideration of the effect of such choices. A key aim of this study is to develop a generalmethod that could be used to construct artificial neural networks by exploring the model structure andparameter space so that informed decisions could be made relating to the model design. In this study,a formal approach is followed to determine suitable structures and parameters for a Feed ForwardMulti-layered Perceptron artificial neural network with a Resilient Propagation learning algorithm witha single hidden layer. This approach is demonstrated through the modelling of four South Africaneconomic variables, namely the average monthly returns on the money, bond and equity markets aswell as monthly inflation. Artificial neural networks can be constructed on the aforementioned variablesin isolation or, jointly, in an integrated model. The performance of a range of more traditional timeseries models is compared with that of the artificial neural network models. The results suggest that,on a statistical level, artificial neural networks perform as well as time series models at forecasting thereturns for financial markets. Hybrid models, combining artificial neural networks with the time seriesmodels, are constructed, trained and tested for the money market and for the rate of inflation. Theyappear to add value to the time series models when forecasting inflation, but not for the money market.
机译:当前尚没有用于确定任何给定应用的最佳人工神经网络结构和参数的分析程序。传统上,当将人工神经网络应用于财务建模问题时,通常会优先考虑结构和参数选择,而没有充分考虑这种选择的效果。这项研究的主要目的是通过探索模型的结构和参数空间来开发一种可用于构建人工神经网络的通用方法,从而可以做出与模型设计有关的明智决策。在这项研究中,遵循一种正式的方法来确定具有单个隐藏层的弹性传播学习算法的前馈多层感知器人工神经网络的合适结构和参数。通过对四个南非经济变量进行建模证明了这种方法,即货币,债券和股票市场的平均每月回报以及每月通货膨胀。可以单独地或共同地在集成模型中基于上述变量构建人工神经网络。将一系列更传统的时间序列模型的性能与人工神经网络模型的性能进行了比较。结果表明,在统计水平上,人工神经网络在预测金融市场收益方面具有与时间序列模型一样的性能。为货币市场和通货膨胀率构建,训练和测试了将人工神经网络与时间序列模型相结合的混合模型。在预测通货膨胀时,它们似乎为时间序列模型增加了价值,但对于货币市场却没有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号